A knowledge-based system approach for sensor fault modeling, detection and mitigation
نویسندگان
چکیده
Sensors are vital components for control and advanced health management techniques. However, sensors continue to be considered the weak link in many engineering applications since often they are less reliable than the system they are observing. This is in part due to the sensors’ operating principles and their susceptibility to interference from the environment. Detecting and mitigating sensor failure modes are becoming increasingly important in more complex and safety-critical applications. This paper reports on different techniques for sensor fault detection, disambiguation, and mitigation. It presents an expert system that uses a combination of object-oriented modeling, rules, and semantic networks to deal with the most common sensor faults, such as bias, drift, scaling, and dropout, as well as system faults. The paper also describes a sensor correction module that is based on fault parameters extraction (for bias, drift, and scaling fault modes) as well as utilizing partial redundancy for dropout sensor fault modes). The knowledge-based system was derived from the results obtained in a previously deployed Neural Network (NN) application for fault detection and disambiguation. Results are illustrated on an electromechanical actuator application where the system faults are jam and spalling. In addition to the functions implemented in the previous work, system fault detection under sensor failure was also modeled. The paper includes a sensitivity analysis that compares the results previously obtained with the NN. It concludes with a discussion of similarities and differences between the two approaches and how the knowledge based system provides additional functionality compared to the NN implementation. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملSensor Fault Detection for a class of Uncertain Nonlinear Systems Using Sliding Mode Observers
This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...
متن کاملAn Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems
Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملUAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification
Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012